A Large-Eddy Simulation Study of Contrail Ice Number Formation

Author:

Lewellen David C.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia

Abstract

AbstractIce crystal number is a critical ingredient in the potential climate impact of persistent contrails and contrail-induced cirrus. We perform an extensive set of large-eddy simulations (LES) of ice nucleation and growth within aircraft exhaust jets with an emphasis on assessing the importance of detailed plume mixing on the effective ice-number emission index (EIiceno) produced for different conditions. Parameter variations considered include ambient temperature, pressure, and humidity; initial aerosol origin (exhaust or ambient), number, and properties; and aircraft engine size. The LES are performed in a temporal representation with binned microphysics including the basics of activation of underlying aerosol, droplet growth, and freezing. We find that a box-model approach reproduces EIiceno from LES well for sufficiently low aerosol numbers or when crystal production is predominantly on ambient aerosol. For larger exhaust aerosol number the box model generally overestimates EIiceno and can underestimate the fraction from ultrafine aerosol. The effects of different parameters on EIiceno can largely be understood with simpler analytic models that are formulated in low and high aerosol-number limits. The simulations highlight the potential importance of “cold” contrails, ambient ultrafine aerosols, crystal loss due to competition between different-sized crystals, and limitations on reducing EIiceno. We find EIiceno insensitive to engine size for lower aerosol numbers, but decreasing with increasing engine size for higher aerosol numbers. Temporal versus spatial representations for jet LES are compared in an appendix.

Funder

Boeing

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3