Evaluation of ECMWF Radiation Scheme Using Aircraft Observations of Spectral Irradiance above Clouds

Author:

Wolf Kevin1ORCID,Ehrlich André1,Mech Mario2,Hogan Robin J.3,Wendisch Manfred1

Affiliation:

1. Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany

2. Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

3. European Centre for Medium-Range Weather Forecasts, and Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

Abstract A novel approach to compare airborne observations of solar spectral irradiances measured above clouds with along-track radiative transfer simulations (RTS) is presented. The irradiance measurements were obtained with the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the High Altitude and Long Range Research Aircraft (HALO). The RTS were conducted using the operational ecRad radiation scheme of the Integrated Forecast System (IFS), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), and a stand-alone radiative transfer solver, the library for Radiative transfer (libRadtran). Profiles of observed and simulated radar reflectivity were provided by the HALO Microwave Package (HAMP) and the Passive and Active Microwave Transfer Model (PAMTRA), respectively. The comparison aims to investigate the capability of the two models to reproduce the observed radiation field. By analyzing spectral irradiances above clouds, different ice cloud optical parameterizations in the models were evaluated. Simulated and observed radar reflectivity fields allowed the vertical representation of the clouds modeled by the IFS to be evaluated, and enabled errors in the IFS analysis data (IFS AD) and the observations to be separated. The investigation of a North Atlantic low pressure system showed that the RTS, in combination with the IFS AD, generally reproduced the observed radiation field. For heterogeneously distributed liquid water clouds, an underestimation of upward irradiance by up to 27% was found. Simulations of ice-topped clouds, using a specific ice optics parameterization, indicated a systematic underestimation of broadband cloud-top albedo, suggesting major deficiencies in the ice optics parameterization between 1242 and 1941 nm wavelength.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3