The Impact of Divergence Tilt and Meridional Flow for Cross-Equatorial Eddy Momentum Transport in Gill-Like Settings

Author:

Zurita-Gotor Pablo1

Affiliation:

1. Universidad Complutense and Instituto de Geociencia UCM-CSIC, Madrid, Spain

Abstract

Abstract This work investigates the sensitivity of the cross-equatorial eddy momentum flux and its rotational and divergent components to Hadley cell strength in simple variants of the Gill problem. An expression is derived linking the divergent momentum flux to the mean meridional wavenumber weighted by the spectrum of divergent eddy kinetic energy, supporting the relation between divergence phase tilt and momentum flux suggested by a previous study. Newtonian cooling makes the divergence tilt eastward moving away from the equator as observed, but this tilt is also sensitive to the Hadley cell. As the divergence tilt is enhanced in the downstream direction of the flow, wave propagation increases along that direction when the Hadley cell strengthens. The meridional flow also plays a second, important role for cross-equatorial propagation. With no Hadley cell, inviscid Sverdrup balance requires perfect compensation between the divergent and rotational momentum fluxes at the equator. The model can only produce cross-equatorial propagation when Sverdrup balance is violated, which in the linear, nearly inviscid limit requires vorticity advection by the mean flow. As the Hadley cell attenuates the geopotential tilt imparted by the divergent forcing, the compensation by the rotational momentum flux is reduced. The linear model can reproduce reasonably well previous nonlinear results by Kraucunas and Hartmann when linearized about their zonal-mean climatologies. The sensitivity of the cross-equatorial momentum fluxes to Hadley cell strength in these solutions is dominated by changes in the divergent flux and consistent with diagnosed changes in the divergence tilt.

Funder

Agencia Estatal de Investigación

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3