An Updated Analysis of Northern Hemisphere Submonthly Retrograde Waves

Author:

Raghunathan Girish Nigamanth1,Huang Huei-Ping1

Affiliation:

1. School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona

Abstract

Abstract This study performs an updated analysis of Northern Hemisphere retrograde disturbances that were first identified by classical observational studies as one of the dominating coherent structures in the higher latitudes on the submonthly time scale. Analyzing 8–30-day bandpass-filtered data based on reanalysis, a set of criteria on the phase and amplitude of zonal wave-1 Fourier coefficients of geopotential height anomalies at 250 mb (1 mb = 1 hPa) and 60°N are used to identify strong retrograde-wave events in the spirit of Madden and Speth. The new catalog of retrograde-wave events from 1979 to 2017 is used to extract basic statistics and structures of retrograde waves across all major events. The results broadly agree with those reported in the classical observational studies, reaffirming the robustness of the phenomenon. The new catalog can be used to aid further studies on the mechanisms and predictability of retrograde waves. As an example, an analysis of isentropic potential vorticity over the Pacific sector for selected retrograde-wave events reveals the common occurrence of an extrusion of low-PV air into the higher latitudes, followed by a westward shift of the low-PV patch and vortex shedding. Future directions of research surrounding the retrograde-wave phenomenon are discussed.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictability Associated with High-Latitude Retrograde Waves in the 1979-80 Winter Season;Journal of the Meteorological Society of Japan. Ser. II;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3