Impacts of Radiation and Cold Pools on the Intensity and Vortex Tilt of Weak Tropical Cyclones Interacting with Vertical Wind Shear

Author:

Rios-Berrios Rosimar1ORCID

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Idealized numerical simulations of weak tropical cyclones (e.g., tropical depressions and tropical storms) in sheared environments indicate that vortex tilt reduction and convective symmetrization are key structural changes that can precede intensification. Through a series of ensembles of idealized numerical simulations, this study demonstrates that including radiation in the simulations affects the timing and variability of those structural changes. The underlying reason for those effects is a background thermodynamic profile with reduced energy available to fuel strong downdrafts; such a profile leads to weaker lower-tropospheric ventilation, greater azimuthal coverage of clouds and precipitation, and smaller vortex tilt with radiation. Consequently, the simulations with radiation allow for earlier intensification at stronger shear magnitudes than without radiation. An unexpected finding from this work is a reduction of both vortex tilt and intensity variability with radiation in environments with 5 m s−1 deep-layer shear. This reduction stems from reduced variability in nonlinear feedbacks between lower-tropospheric ventilation, cold pools, convection, and vortex tilt. Sensitivity experiments confirm the relationship between those processes and suggest that microphysical processes (e.g., rain evaporation) are major sources of uncertainty in the representation of weak, sheared tropical cyclones in numerical weather prediction models.

Funder

Directorate for Geosciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3