Consistent Impacts of Surface Enthalpy and Drag Coefficient Uncertainty between an Analytical Model and Simulated Tropical Cyclone Maximum Intensity and Storm Structure

Author:

Nystrom Robert G.1ORCID,Rotunno Richard2,Davis Chris A.2,Zhang Fuqing1

Affiliation:

1. Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Several previous studies have demonstrated the significant sensitivity of simulated tropical cyclone structure and intensity to variations in surface-exchange coefficients for enthalpy (Ck) and momentum (Cd), respectively. In this study we investigate the consistency of the estimated peak intensity, intensification rate, and steady-state structure between an analytical model and idealized axisymmetric numerical simulations for both constant Ck and Cd values and various wind speed–dependent representations of Ck and Cd. The present analysis with constant Ck and Cd values demonstrates that the maximum wind speed is similar for identical Ck/Cd values less than 1, regardless of whether changes were made to Ck or Cd. However, for a given Ck/Cd greater than 1, the simulated and theoretical maximum wind speed are both greater if Cd is decreased compared to Ck increased. This behavior results because of a smaller enthalpy disequilibrium at the radius of maximum winds for larger Ck. Additionally, the intensification rate is shown to increase with Ck and Cd and the steady-state normalized wind speed beyond the radius of maximum winds is shown to increase with increasing Cd. Experiments with wind speed–dependent Ck and Cd were found to be generally consistent, in terms of the intensification rate and the simulated and analytical-model-estimated maximum wind speed, with the experiments with constant Ck and Cd.

Funder

National Aeronautics and Space Administration

Office of Naval Research

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3