Information Theory and Predictability for Low-Frequency Variability

Author:

Abramov Rafail1,Majda Andrew1,Kleeman Richard1

Affiliation:

1. Courant Institute of Mathematical Sciences, Center for Atmosphere Ocean Science, New York University, New York, New York

Abstract

Abstract A predictability framework, based on relative entropy, is applied here to low-frequency variability in a standard T21 barotropic model on the sphere with realistic orography. Two types of realistic climatology, corresponding to different heights in the troposphere, are used. The two dynamical regimes with different mixing properties, induced by the two types of climate, allow the testing of the predictability framework in a wide range of situations. The leading patterns of empirical orthogonal functions, projected onto physical space, mimic the large-scale teleconnections of observed flow, in particular the Arctic Oscillation, Pacific–North American pattern, and North Atlantic Oscillation. In the ensemble forecast experiments, relative entropy is utilized to measure the lack of information in three different situations: the lack of information in the climate relative to the forecast ensemble, the lack of information by using only the mean state and variance of the forecast ensemble, and information flow—the time propagation of the lack of information in the direct product of marginal probability densities relative to joint probability density in a forecast ensemble. A recently developed signal–dispersion–cross-term decomposition is utilized for climate-relative entropy to determine different physical sources of forecast information. It is established that though dispersion controls both the mean state and variability of relative entropy, the sum of signal and cross-term governs physical correlations between a forecast ensemble and EOF patterns. Information flow is found to be responsible for correlated switches in the EOF patterns within a forecast ensemble.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3