Global Observing System Experiments within the Météo-France 4D-Var Data Assimilation System

Author:

Chambon P.1,Mahfouf J.-F.1,Audouin O.1,Birman C.1,Fourrié N.1,Loo C.1,Martet M.1,Moll P.1,Payan C.1,Pourret V.1,Raspaud D.1

Affiliation:

1. a CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Abstract

Abstract Observing system experiments were undertaken within the 4D-Var data assimilation of the Météo-France global numerical weather prediction (NWP) model. A 6-month period was chosen (October 2019–March 2020) where 40 million observations per day were assimilated. The importance of in situ observations provided by aircraft, radiosondes, and surface weather stations, despite their small fractional amount (7%), has been confirmed particularly in the Northern Hemisphere. Moreover, the largest impact over Europe in terms of root-mean-square error (RMSE) scores comes from surface observations. Satellite data play a dominant role over tropical regions and the Southern Hemisphere. Microwave radiances have a more pronounced impact on the long range and on the humidity field than infrared radiances, despite being less numerous (10% versus 80%). Bending angles impact significantly the quality of the upper-troposphere–lower-stratosphere temperature of the tropics and Southern Hemisphere. Atmospheric motion vectors (AMVs) are beneficial in wind forecasts at low and high levels in the tropics and the Southern Hemisphere, but also in the humidity field. Such impacts are only significant during the first 48 h of the forecasts. Scatterometer winds have an impact restricted to low levels that is kept at longer ranges. A comparison with forecast sensitivity–observation impact studies over a 3-month period using the same measure of short-range (24-h) forecast errors reveals that the ranking between the major observing systems is kept between these two ways of measuring observation impact in NWP. From our conclusions, recommendations are provided on possible evolutions of the global observing system for NWP.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Limitations of wind extraction from 4D-Var assimilation of ozone;Allen, D. R.,2013

2. Adaptive bias correction for satellite data in numerical weather prediction;Auligné, T.,2007

3. An overview of the TROPICS NASA Earth venture mission;Blackwell, W. J.,2018

4. Bormann, N., H. Lawrence, and J. Farnan, 2019: Global observing system experiments in the ECMWF assimilation system. ECMWF Tech. Memo. 839, 24 pp., https://doi.org/10.21957/sr184iyz.

5. Observing-system experiments in the ECMWF 4D-Var data assimilation system;Bouttier, F.,2001

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3