Tornadoes in Southeast South America: Mesoscale to Planetary-Scale Environments

Author:

Veloso-Aguila Daniel1ORCID,Rasmussen Kristen L.1,Maloney Eric D.1

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract A multiscale analysis of the environment supporting tornadoes in southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American low-level jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden–Julian oscillation phase 3 preferentially occurs 1–2 weeks ahead of tornado occurrence. Significance Statement The main goal of this study is to describe what atmospheric conditions (from local to global scales) are present prior to and during tornadic storms impacting southeast South America (SESA). Increasing potential for deep convection, wind shear, and potential for rotating updrafts, as well as reducing convective inhibition and cloud-base height, are predominant a few hours before and during the events in connection to low-level northerly winds enhancing moisture transport to the region. Remote convective activity near northern Australia appears to influence large-scale atmospheric circulation that subsequently triggers convective storms supporting tornadogenesis 1–2 weeks later in SESA. Our findings highlight the importance of accounting for atmospheric processes occurring at different scales to understand and predict tornado occurrences.

Funder

National Science Foundation

Fulbright Chile

Agencia Nacional de Investigación y Desarrollo

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference116 articles.

1. Influence of the Madden–Julian Oscillation on precipitation and surface air temperature in South America;Alvarez, M. S.,2016

2. Population influences on tornado reports in the United States;Anderson, C. J.,2007

3. Investigation of near-storm environments for tornado events and warnings;Anderson-Frey, A. K.,2016

4. Self-organizing maps for the investigation of tornadic near-storm environments;Anderson-Frey, A. K.,2017

5. Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden-Julian Oscillation;Baggett, C. F.,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3