Climatology of Significant Tornadoes within China and Comparison of Tornado Environments between the United States and China

Author:

Zhang Chenyue1,Xue Ming123ORCID,Zhu Kefeng14,Yu Xiaoding5

Affiliation:

1. a Key Laboratory of Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

2. b Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

3. c School of Meteorology, University of Oklahoma, Norman, Oklahoma

4. d Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing, China

5. e China Meteorological Administration Training Center, Beijing, China

Abstract

Abstract A climatology of significant tornadoes [SIGTOR, tornadoes rated (E)F2+ on the (enhanced) Fujita scale] within China and in three subregions, including northern, central, and southern China, is first presented for the period 1980–2016. In total, 129 SIGTOR are recorded in China, with an average of 3.5 per year. The tornado inflow environments of the south-central and southeast regions of the United States (USC and USSE) are compared with those of China and its subregions based on sounding-derived parameters including shear, storm-relative helicity, convective available potential energy (CAPE), lifting condensation level (LCL), etc. Soundings are extracted from the ERA5 reanalysis dataset. The results confirm that the SIGTOR in USSE are characterized by high shear, low CAPE, and low LCL whereas those in USC are characterized by moderate-to-high shear, high CAPE, and high LCL. The thermodynamic conditions of tornadic cases are favorable for China, with moderate-to-high CAPE and low-to-moderate LCL, but their kinematic conditions are much less favorable than in the United States, a fact that is believed to be primarily responsible for the lower tornado frequency and intensity in China. The high CAPE in China is due mostly to high humidity. For three subregions in China, the central China cases account for 60% of total samples, and its environmental features are similar to those of China. The average shear with northern China cases is stronger than that with the other two subregions, and the midlayer is relatively dry. The southern China SIGTOR have the most conducive humidity conditions, but the CAPE and shear there are the lowest. The northern, central, and southern China environments can be considered as representative of midlatitude, subtropical, and tropical regions. Significance Statement We document the climatological characteristics of significant tornadoes (SIGTOR) within China and compare the inflow environments of SIGTOR in China and its subregions with those in the U.S. central and southeastern regions. The availability of hourly high-resolution ERA5 data makes the environments based on extracted proximity soundings much more accurate than possible with earlier reanalyses. The environmental characteristics show systematic differences in the tornado environments of different regions of China and the United States and suggest different roles played by thermodynamic and kinematic conditions for tornado formation. Overall, the environmental differences are consistent with the resulting frequency and intensities of SIGTOR. The findings are helpful toward improving tornado forecasting and warning or even understanding of potential impacts of climate change on SIGTOR, especially in China, where such studies are rarer.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference76 articles.

1. Investigation of near-storm environments for tornado events and warnings;Anderson-Frey, A. K.,2016

2. Characteristics of tornado events and warnings in the southeastern United States;Anderson-Frey, A. K.,2019

3. Vulnerability due to nocturnal tornadoes;Ashley, W. S.,2008

4. An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015);Bai, L.,2017

5. Climatology of tropical cyclone tornadoes in China from 2006 to 2018;Bai, L.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3