Organizational Modes of Spring and Summer Convective Storms and Associated Severe Weather over Southern China during 2015–19

Author:

Xue Chenbin123,Shen Xinyong14,Ding Zhiying1,Wu Naigeng12,Zhang Yizhi3,Chen Xian5,Guo Chunyan6

Affiliation:

1. a Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

2. b Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

3. c Jiangxi Institute of Meteorological Sciences, Nanchang, China

4. d Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

5. e Jiangxi Institute of Land and Space Survey and Planning/Jiangxi Geomatics Center, Nanchang, China

6. f Inner Mongolia Meteorological Service Center, Hohhot, China

Abstract

Abstract This study investigates the organizational modes of convective storms and associated severe weather in spring and summer (March–August) of 2015–19 over southern China. These storms are classified into three major organizational structures (cellular, linear, and nonlinear), including 10 dominant morphologies. In general, cellular systems are most frequent, followed by linear systems. Convective storms are common in spring, increasing markedly from April to June, and peak in June. Convective storm cases are usually longer lived in spring, while shorter lived in summer. They also present pronounced diurnal variations, with a primary peak in the afternoon and several secondary peaks during the night to the morning. Approximately 79.7% of initial convection clearly exhibits a dominant eastward movement, with a faster moving speed in spring. Convective storms frequently evolve among organizational modes during their life spans. Linear systems produce the most severe weather observations, in which convective lines with trailing stratiform rain are most prolific. Bow echoes are most efficient in producing severe weather events among all systems, despite their rare occurrences. In spring, lines with parallel stratiform rain are abundant producers of severe wind events, ranking the second highest probability. In summer, embedded lines produce the second largest proportion of intense rainfall events, whereas lines with leading stratiform rain are most efficient in generating extremely intense rainfall and thus pose a distinct flooding threat. Broken lines produce the largest proportion of severe weather events among cellular storms. In contrast, nonlinear systems possess the weakest capability to produce severe weather events. Significance Statement Under the influence of the East Asian summer monsoon, severe weather events produced by convective storms occur frequently in China, leading to serious natural disasters. Numerous studies have demonstrated that the morphologies of convective storms are helpful to improve our understanding and prediction of convective storms. However, fewer attempts have been made to examine the convective morphologies over southern China. We aim to reveal the general features of convective organizational modes (e.g., frequencies, durations, variations, etc.) and determine which particular types of severe weather are more or less likely to be associated with particular convective morphologies. These results are of benefit to local forecasters for better anticipating the storm types and issuing warnings for related hazardous weather.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province, China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3