Diagnosing Storm Mode with Deep Learning in Convection-Allowing Models

Author:

Sobash Ryan A.1,Gagne David John1,Becker Charlie L.1,Ahijevych David1,Gantos Gabrielle N.1,Schwartz Craig S.1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract While convective storm mode is explicitly depicted in convection-allowing model (CAM) output, subjectively diagnosing mode in large volumes of CAM forecasts can be burdensome. In this work, four machine learning (ML) models were trained to probabilistically classify CAM storms into one of three modes: supercells, quasi-linear convective systems, and disorganized convection. The four ML models included a dense neural network (DNN), logistic regression (LR), a convolutional neural network (CNN), and semisupervised CNN–Gaussian mixture model (GMM). The DNN, CNN, and LR were trained with a set of hand-labeled CAM storms, while the semisupervised GMM used updraft helicity and storm size to generate clusters, which were then hand labeled. When evaluated using storms withheld from training, the four classifiers had similar ability to discriminate between modes, but the GMM had worse calibration. The DNN and LR had similar objective performance to the CNN, suggesting that CNN-based methods may not be needed for mode classification tasks. The mode classifications from all four classifiers successfully approximated the known climatology of modes in the United States, including a maximum in supercell occurrence in the U.S. Central Plains. Further, the modes also occurred in environments recognized to support the three different storm morphologies. Finally, storm mode provided useful information about hazard type, e.g., storm reports were most likely with supercells, further supporting the efficacy of the classifiers. Future applications, including the use of objective CAM mode classifications as a novel predictor in ML systems, could potentially lead to improved forecasts of convective hazards. Significance Statement Whether a thunderstorm produces hazards such as tornadoes, hail, or intense wind gusts is in part determined by whether the storm takes the form of a single cell or a line. Numerical forecasting models can now provide forecasts that depict this structure. We tested several automated algorithms to extract this information from forecast output using machine learning. All of the automated methods were able to distinguish between a set of three convective types, with the simple techniques providing similarly skilled classifications compared to the complex approaches. The automated classifications also successfully discriminated between thunderstorm hazards, potentially leading to new forecast tools and better forecasts of high-impact convective hazards.

Funder

NOAA Weather Program Office

Integrative and Collaborative Education and Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. A climatology of quasi-linear convective systems and their hazards in the United States;Ashley, W. S.,2019

2. Automated detection of weather fronts using a deep learning neural network;Biard, J. C.,2019

3. Tornado probability of detection and lead time as a function of convective mode and environmental parameters;Brotzge, J. A.,2013

4. CISL, 2020: Cheyenne: HPE/SGI ICE XA System (NCAR Community Computing). NCAR/CISL Advanced Research Computing, accessed 1 July 2019–30 June 2023, https://doi.org/10.5065/D6RX99HX.

5. The third real-time, virtual Spring Forecasting Experiment to advance severe weather prediction capabilities;Clark, A. J.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3