Improving National Blend of Models Probabilistic Precipitation Forecasts Using Long Time Series of Reforecasts and Precipitation Reanalyses. Part I: Methods

Author:

Hamill Thomas M.12ORCID,Stovern Diana R.31,Smith Lesley L.31

Affiliation:

1. b NOAA/Physical Sciences Laboratory, Boulder, Colorado

2. c IBM/Weather Company, Andover, Massachusetts

3. a Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract This article describes proposed revised methods for the statistical postprocessing of precipitation amount intended for the NOAA’s National Blend of Models using the Global Ensemble Forecast System version 12 data (GEFSv12). The procedure updates the previously established procedure of quantile mapping, weighting of sorted members, and dressing of the ensemble. The revised method leverages the long reforecast training dataset that has become available to improve quantile mapping of GEFSv12 data by eliminating the use of supplemental locations, that is, training data from other grid points. It establishes improved definitions of cumulative distributions through a spline-fitting approach. It provides updated algorithms for the weighting of sorted members based on closest-member histogram statistics, and it establishes an objective method for the dressing of the quantile-mapped, weighted ensemble. Verification statistics and case studies are provided in the accompanying article (Part II).

Funder

NOAA Weather Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

1. MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment;Beck, H. E.,2019

2. Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms;Ben Bouallègue, Z.,2013

3. National Blend of Models: A statistically post-processed multi-model ensemble;Craven, J. P.,2020

4. The science of NOAA’s operational Hydrologic Ensemble Forecast Service;Demargne, J.,2014

5. GEFSv12 reforecast dataset for supporting subseasonal and hydrometeorological applications;Guan, H.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3