Evaluating Contour Band Depth as a Method for Understanding Ensemble Uncertainty

Author:

Santer Henry1,Poterjoy Jonathan1,McCurry Joshua1

Affiliation:

1. a Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract Estimating and predicting the state of the atmosphere is a probabilistic problem for which an ensemble modeling approach often is taken to represent uncertainty in the system. Common methods for examining uncertainty and assessing performance for ensembles emphasize pointwise statistics or marginal distributions. However, these methods lose specific information about individual ensemble members. This paper explores contour band depth (cBD), a method of analyzing uncertainty in terms of contours of scalar fields. cBD is fully nonparametric and induces an ordering on ensemble members that leads to box-and-whisker-plot-type visualizations of uncertainty for two-dimensional data. By applying cBD to synthetic ensembles, we demonstrate that it provides enhanced information about the spatial structure of ensemble uncertainty. We also find that the usefulness of the cBD analysis depends on the presence of multiple modes and multiple scales in the ensemble of contours. Finally, we apply cBD to compare various convection-permitting forecasts from different ensemble prediction systems and find that the value it provides in real-world applications compared to standard analysis methods exhibits clear limitations. In some cases, contour boxplots can provide deeper insight into differences in spatial characteristics between the different ensemble forecasts. Nevertheless, identification of outliers using cBD is not always intuitive, and the method can be especially challenging to implement for flow that exhibits multiple spatial scales (e.g., discrete convective cells embedded within a mesoscale weather system). Significance Statement Predictions of Earth’s atmosphere inherently come with some degree of uncertainty owing to incomplete observations and the chaotic nature of the system. Understanding that uncertainty is critical when drawing scientific conclusions or making policy decisions from model predictions. In this study, we explore a method for describing model uncertainty when the quantities of interest are well represented by contours. The method yields a quantitative visualization of uncertainty in both the location and the shape of contours to an extent that is not possible with standard uncertainty quantification methods and may eventually prove useful for the development of more robust techniques for evaluating and validating numerical weather models.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Allendes Osorio, R. S., and K. W. Brodlie, 2008: Contouring with uncertainty. Theory and Practice of Computer Graphics, I. S. Lim and W. Tang, Eds., The Eurographics Association, 59–66, https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG08/059-065.

2. An ensemble adjustment Kalman filter for data assimilation;Anderson, J. L.,2001

3. Spectral and spatial localization of background-error correlations for data assimilation;Buehner, M.,2007

4. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity;Chen, F.,2001

5. Simulating weather regimes: Impact of model resolution and stochastic parameterization;Dawson, A.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3