Improving Tropical Cyclogenesis Forecasts of Hurricane Irma (2017) through the Assimilation of All-Sky Infrared Brightness Temperatures

Author:

Hartman Christopher M.12,Chen Xingchao12ORCID,Chan Man-Yau12

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. b Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract The assimilation of satellite all-sky infrared (IR) brightness temperatures (BTs) has been shown in previous studies to improve intensity forecasts of tropical cyclones. In this study, we examine whether assimilating all-sky IR BTs can also potentially improve tropical cyclogenesis forecasts by improving the pregenesis cloud and moisture fields. By using an ensemble-based data assimilation system, we show that the assimilation of upper-tropospheric water vapor channel BTs observed by the Meteosat-10 SEVIRI instrument two days before the formation of a tropical depression improves the genesis forecast of Hurricane Irma (2017), a classic Cape Verde storm, by up to 24 h while also capturing its later rapid intensification in deterministic forecasts. In an experiment that withholds the assimilation of all-sky IR BTs, the assimilation of conventional observations from the Global Telecommunications System (GTS) leads to the premature genesis of Hurricane Irma by at least 24 h. This premature genesis is shown to result from an overestimation of the spatial coverage of deep convection within the African easterly wave (AEW) from which Irma eventually forms. The gross overestimation of deep convection without all-sky IR BTs is accompanied by higher column saturation fraction, stronger low-level convergence, and the earlier spinup of a low-level meso-β-scale vortex within the AEW that ultimately becomes Hurricane Irma. Through its adjustment to the initial moisture and cloud conditions, the assimilation of all-sky IR BTs leads to a more realistic convective evolution in forecasts and ultimately a more realistic timing of genesis. Significance Statement Every year hurricanes impact the lives of thousands of people living along the eastern coast of the United States. Many of these storms originate from tropical disturbances that exit the west coast of Africa. To give the public more warning time ahead of these storms, it is important to improve the forecasts of their formation. This study uses a system developed at The Pennsylvania State University to incorporate satellite observations into forecasts of a classic Cape Verde storm, Hurricane Irma (2017), two days before it formed. By using satellite-collected radiances, we improve the timing of its formation by up to 24 h due to a better representation of the mesoscale tropical disturbance from which it originated.

Funder

Office of Naval Research

National Aeronautics and Space Administration

National Oceanic and Atmospheric Administration

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference98 articles.

1. An ensemble adjustment Kalman filter for data assimilation;Anderson, J. L.,2001

2. Spatially and temporally varying adaptive covariance inflation for ensemble filters;Anderson, J. L.,2009

3. Scalable implementations of ensemble filter algorithms for data assimilation;Anderson, J. L.,2007

4. On the dynamics of the formation of the Kelvin cat’s-eye in tropical cyclogenesis. Part II: Numerical simulation;Asaadi, A.,2016

5. The importance of critical layer in differentiating developing from nondeveloping easterly waves;Asaadi, A.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3