Challenges for Inline Observation Error Estimation in the Presence of Misspecified Background Uncertainty

Author:

Walsworth Andrew1,Poterjoy Jonathan1ORCID,Satterfield Elizabeth2

Affiliation:

1. a Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

2. b Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Abstract

Abstract For data assimilation to provide faithful state estimates for dynamical models, specifications of observation uncertainty need to be as accurate as possible. Innovation-based methods based on Desroziers diagnostics, are commonly used to estimate observation uncertainty, but such methods can depend greatly on the prescribed background uncertainty. For ensemble data assimilation, this uncertainty comes from statistics calculated from ensemble forecasts, which require inflation and localization to address under sampling. In this work, we use an ensemble Kalman filter (EnKF) with a low-dimensional Lorenz model to investigate the interplay between the Desroziers method and inflation. Two inflation techniques are used for this purpose: 1) a rigorously tuned fixed multiplicative scheme and 2) an adaptive state-space scheme. We document how inaccuracies in observation uncertainty affect errors in EnKF posteriors and study the combined impacts of misspecified initial observation uncertainty, sampling error, and model error on Desroziers estimates. We find that whether observation uncertainty is over- or underestimated greatly affects the stability of data assimilation and the accuracy of Desroziers estimates and that preference should be given to initial overestimates. Inline estimates of Desroziers tend to remove the dependence between ensemble spread–skill and the initially prescribed observation error. In addition, we find that the inclusion of model error introduces spurious correlations in observation uncertainty estimates. Further, we note that the adaptive inflation scheme is less robust than fixed inflation at mitigating multiple sources of error. Last, sampling error strongly exacerbates existing sources of error and greatly degrades EnKF estimates, which translates into biased Desroziers estimates of observation error covariance. Significance Statement To generate accurate predictions of various components of the Earth system, numerical models require an accurate specification of state variables at our current time. This step adopts a probabilistic consideration of our current state estimate versus information provided from environmental measurements of the true state. Various strategies exist for estimating uncertainty in observations within this framework, but are sensitive to a host of assumptions, which are investigated in this study.

Funder

National Science Foundation

NOAA

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference29 articles.

1. An adaptive covariance inflation error correction algorithm for ensemble filters;Anderson, J. L.,2007

2. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts;Anderson, J. L.,1999

3. Adaptive ensemble Kalman filtering of non-linear systems;Berry, T.,2013

4. Adaptive sampling with the ensemble transform Kalman filter;Bishop, C. H.,2000

5. Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data;Bormann, N.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3