Impacts of Cumulus Convection and Turbulence Parameterizations on the Convection-Permitting Simulation of Typhoon Precipitation

Author:

Shi Xiaoming1ORCID,Wang Yueya1

Affiliation:

1. a Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China

Abstract

Abstract Convection-permitting resolutions, which refer to kilometer-scale horizontal grid spacings, have become increasingly popular in regional numerical weather prediction and climate studies. However, this resolution range is in the gray zone for the simulation of convection, where conventional cumulus convection and subgrid-scale (SGS) turbulence parameterizations are inadequate for such grid spacings due to invalid assumptions and simplifications. Recent studies demonstrated that the magnitudes of SGS fluxes of momentum and scalars are comparable to those of resolved fluxes at convection-permitting resolutions and that horizontal SGS components are as important as the vertical SGS component. Thus, it appears necessary to adapt available schemes to model the SGS effects of convective motions for the gray zone. Here, we investigated the efficacy of separately parameterizing the vertical and horizontal SGS effects in improving the convection-permitting simulation of Typhoon Vicente (2012). To represent the vertical SGS turbulence effect, we evaluated the Grell-3, Tiedtke, and multiscale Kain–Fritsch (MSKF) schemes in the Weather Research and Forecasting (WRF) Model; the MSKF scheme is scale adaptive, whereas the other two are conventional cumulus schemes. For horizontal SGS turbulence, we evaluated the effects of the traditional Smagorinsky scheme and our newly developed reconstruction and nonlinear anisotropy (RNA) model, which models not only downgradient diffusion but also backscatter. We found that the simulation combining the MSKF and RNA schemes exhibits the best skill in predicting precipitation, especially rainfall extremes. The advantages are rooted in the MSKF scheme’s scale-awareness and parameterized cloud–radiation feedback and in the backscatter-enabling capability of the RNA model. Significance Statement Operational numerical weather prediction and some climate simulations have approached kilometer-scale horizontal resolutions, called convection-permitting resolutions. However, details of convective storms are not well represented at these resolutions, and small-scale fluid motions can potentially impact the overall simulation performance. In practice, the effects of such unresolved turbulent eddies were once neglected. We suggest representing these effects in the vertical and horizontal directions with an adaptive cumulus convection parameterization and an advanced turbulence model, respectively, which significantly improve the simulation of tropical cyclones. This framework allows us to adapt convection schemes developed by the mesoscale modeling community and turbulence schemes studied by large-eddy simulation groups for representing three-dimensional turbulence in the convection-permitting regime.

Funder

Research Grants Council, University Grants Committee

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3