A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part II: Moisture Transports between Earth’s Ocean Basins and River Catchments

Author:

Stohl Andreas1,James Paul2

Affiliation:

1. Norwegian Institute for Air Research, Kjeller, Norway

2. Technical University of Munich, Munich, Germany

Abstract

Abstract A diagnostic Lagrangian method to trace the budgets of freshwater fluxes, first described in Part I of this article, is used here to establish source–sink relationships of moisture between earth’s ocean basins and river catchments. Using the Lagrangian particle dispersion model FLEXPART, driven with meteorological analyses, 1.1 million particles, representing the mass of the atmosphere, were tracked over a period of 4 yr. Via diagnosis of the changes of specific humidity along the trajectories, budgets of evaporation minus precipitation (E − P) were determined. For validation purposes, E − P budgets were calculated for 39 river catchments and compared with climatological streamflow data for these rivers. Good agreement (explained variance 87%) was found between the two quantities. The E − P budgets were then tracked forward from all of earth’s ocean basins and backward from the 39 major river catchments for a period of 10 days. As much previous work was done for the Mississippi basin, this basin was chosen for a detailed analysis. Moisture recycling over the continent and moisture transport from the Gulf of Mexico were identified as the major sources for precipitation over the Mississippi basin, in quantitative agreement with previous studies. In the remainder of the paper, global statistics for source–sink relationships of moisture between the ocean basins and river catchments are presented. They show, for instance, the evaporative capacity of monsoonal flows for precipitation over the Ganges and Niger catchments, and the transport of moisture from both hemispheres to supply the Amazon’s precipitation. In contrast, precipitation in northern Eurasia draws its moisture mainly via recycling over the continent. The atmospheric transport of moisture between different ocean basins was also investigated. It was found that transport of air from the North Pacific produces net evaporation over the North Atlantic, but not vice versa. This helps to explain why the sea surface salinity is higher in the North Atlantic than in the North Pacific, a difference thought to be an important driver of the oceans’ thermohaline circulation. Finally, limitations of the method are discussed and possible future developments are outlined.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3