Calibration of Machine Learning–Based Probabilistic Hail Predictions for Operational Forecasting

Author:

Burke Amanda1,Snook Nathan2,Gagne II David John3,McCorkle Sarah4,McGovern Amy5

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

3. National Center for Atmospheric Research, Boulder, Colorado

4. Indiana University, Bloomington, Indiana

5. School of Computer Science, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract In this study, we use machine learning (ML) to improve hail prediction by postprocessing numerical weather prediction (NWP) data from the new High-Resolution Ensemble Forecast system, version 2 (HREFv2). Multiple operational models and ensembles currently predict hail, however ML models are more computationally efficient and do not require the physical assumptions associated with explicit predictions. Calibrating the ML-based predictions toward familiar forecaster output allows for a combination of higher skill associated with ML models and increased forecaster trust in the output. The observational dataset used to train and verify the random forest model is the Maximum Estimated Size of Hail (MESH), a Multi-Radar Multi-Sensor (MRMS) product. To build trust in the predictions, the ML-based hail predictions are calibrated using isotonic regression. The target datasets for isotonic regression include the local storm reports and Storm Prediction Center (SPC) practically perfect data. Verification of the ML predictions indicates that the probability magnitudes output from the calibrated models closely resemble the day-1 SPC outlook and practically perfect data. The ML model calibrated toward the local storm reports exhibited better or similar skill to the uncalibrated predictions, while decreasing model bias. Increases in reliability and skill after calibration may increase forecaster trust in the automated hail predictions.

Funder

Joint Technology Transfer Initiative

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference62 articles.

1. Forecasting hail using a one-dimensional hail growth model within WRF;Adams-Selin;Mon. Wea. Rev.,2016

2. Automation: Has its time really come?;Bosart;Wea. Forecasting,1989

3. Random forests;Breiman;Mach. Learn.,2001

4. Submodel selection and evaluation in regression. The X-random case;Breiman;Int. Stat. Rev.,1992

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3