Neighborhood- and Object-Based Probabilistic Verification of the OU MAP Ensemble Forecasts during 2017 and 2018 Hazardous Weather Testbeds

Author:

Johnson Aaron1,Wang Xuguang1,Wang Yongming1,Reinhart Anthony2,Clark Adam J.3,Jirak Israel L.4

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. NOAA/OAR/National Severe Storms Laboratory, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

4. NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

Abstract

Abstract An object-based probabilistic (OBPROB) forecasting framework is developed and applied, together with a more traditional neighborhood-based framework, to convection-permitting ensemble forecasts produced by the University of Oklahoma (OU) Multiscale data Assimilation and Predictability (MAP) laboratory during the 2017 and 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiments. Case studies from 2017 are used for parameter tuning and demonstration of methodology, while the 2018 ensemble forecasts are systematically verified. The 2017 case study demonstrates that the OBPROB forecast product can provide a unique tool to operational forecasters that includes convective-scale details such as storm mode and morphology, which are typically lost in neighborhood-based methods, while also providing quantitative ensemble probabilistic guidance about those details in a more easily interpretable format than the more commonly used paintball plots. The case study also demonstrates that objective verification metrics reveal different relative performance of the ensemble at different forecast lead times depending on the verification framework (i.e., object versus neighborhood) because of the different features emphasized by object- and neighborhood-based evaluations. Both frameworks are then used for a systematic evaluation of 26 forecasts from the spring of 2018. The OBPROB forecast verification as configured in this study shows less sensitivity to forecast lead time than the neighborhood forecasts. Both frameworks indicate a need for probabilistic calibration to improve ensemble reliability. However, lower ensemble discrimination for OBPROB than the neighborhood-based forecasts is also noted.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3