Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Near-Term Regional Temperature and Precipitation

Author:

Lai Yuchuan1,Dzombak David A.1

Affiliation:

1. Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania

Abstract

Abstract A data-driven approach for obtaining near-term (2–20 years) regional temperature and precipitation projections utilizing local historical observations was established in this study to facilitate civil and environmental engineering applications. Given the unique characteristics of temporal correlation and skewness exhibited in individual time series of temperature and precipitation variables, a statistical time series forecasting technique was developed based on the autoregressive integrated moving average (ARIMA) model. Annual projections obtained from the ARIMA model—depending on individual series—can be interpreted as an integration of the most recent observations and the long-term historical trend. In addition to annual temperature and precipitation forecasts, methods of estimating confidence intervals for different return periods and simulating future daily temperature and precipitation were developed to extend the applicability for use in engineering. Quantitative comparisons of annual temperature and precipitation forecasts developed from the ARIMA model and other common statistical techniques such as a linear trend method were performed. Results suggested that while the ARIMA model cannot outperform all other techniques for all evaluated climate indices, the ARIMA model in general provides more accurate projections—especially interval forecasts—and is more reliable than other common statistical techniques. With the use of the ARIMA-based statistical forecasting model, interpretable and reliable near-term, location-specific temperature and precipitation forecasts can be obtained for consideration of changing climate in civil and environmental engineering applications.

Funder

Carnegie Mellon University

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference68 articles.

1. A comparison of statistical downscaling methods suited for wildfire applications;Abatzoglou;Int. J. Climatol.,2012

2. Extremes in a Changing Climate

3. The changing climate and national building codes and standards;Auld,2010

4. An analysis of transformations;Box;J. Roy. Stat. Soc.,1964

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3