Assessment of ECMWF SEAS5 Seasonal Forecast Performance over South America

Author:

Gubler S.1,Sedlmeier K.1,Bhend J.1,Avalos G.2,Coelho C. A. S.3,Escajadillo Y.2,Jacques-Coper M.4,Martinez R.5,Schwierz C.1,de Skansi M.6,Spirig Ch.1

Affiliation:

1. a Federal Office of Meteorology and Climatology, MeteoSwiss, Zürich, Switzerland

2. b Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Peru

3. c Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Brazil

4. d Departamento de Geofísica and (CR)2, Universidad de Concepción, Concepción, Chile

5. e Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador

6. f Servicio Meteorológico Nacional, Buenos Aires, Argentina

Abstract

AbstractSeasonal predictions have a great socioeconomic potential if they are reliable and skillful. In this study, we assess the prediction performance of SEAS5, version 5 of the seasonal prediction system of the European Centre for Medium-Range Weather Forecasts (ECMWF), over South America against homogenized station data. For temperature, we find the highest prediction performances in the tropics during austral summer, where the probability that the predictions correctly discriminate different observed outcomes is 70%. In regions lying to the east of the Andes, the predictions of maximum and minimum temperature still exhibit considerable performance, while farther to the south in Chile and Argentina the temperature prediction performance is low. Generally, the prediction performance of minimum temperature is slightly lower than for maximum temperature. The prediction performance of precipitation is generally lower and spatially and temporally more variable than for temperature. The highest prediction performance is observed at the coast and over the highlands of Colombia and Ecuador, over the northeastern part of Brazil, and over an isolated region to the north of Uruguay during DJF. In general, Niño-3.4 has a strong influence on both air temperature and precipitation in the regions where ECMWF SEAS5 shows high performance, in some regions through teleconnections (e.g., to the north of Uruguay). However, we show that SEAS5 outperforms a simple empirical prediction based on Niño-3.4 in most regions where the prediction performance of the dynamical model is high, thereby supporting the potential benefit of using a dynamical model instead of statistical relationships for predictions at the seasonal scale.

Funder

Direktion für Entwicklung und Zusammenarbeit

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Consejo Nacional de Innovación, Ciencia y Tecnología

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3