A Deep Learning Model for Precipitation Nowcasting Using Multiple Optical Flow Algorithms

Author:

Ha Ji-Hoon1ORCID,Lee Hyesook1

Affiliation:

1. a National Institute of Meteorological Sciences, Jeju, South Korea

Abstract

Abstract The optical flow technique has advantages in motion tracking and has long been employed in precipitation nowcasting to track the motion of precipitation fields using ground radar datasets. However, the performance and forecast time scale of models based on optical flow are limited. Here, we present the results of the application of the deep learning method to optical flow estimation to extend its forecast time scale and enhance the performance of nowcasting. It is shown that a deep learning model can better capture both multispatial and multitemporal motions of precipitation events compared with traditional optical flow estimation methods. The model comprises two components: 1) a regression process based on multiple optical flow algorithms, which more accurately captures multispatial features compared with a single optical flow algorithm; and 2) a U-Net-based network that trains multitemporal features of precipitation movement. We evaluated the model performance with cases of precipitation in South Korea. In particular, the regression process minimizes errors by combining multiple optical flow algorithms with a gradient descent method and outperforms other models using only a single optical flow algorithm up to a 3-h lead time. Additionally, the U-Net plays a crucial role in capturing nonlinear motion that cannot be captured by a simple advection model through traditional optical flow estimation. Consequently, we suggest that the proposed optical flow estimation method with deep learning could play a significant role in improving the performance of current operational nowcasting models, which are based on traditional optical flow methods. Significance Statement The purpose of this study is to improve the accuracy of short-term rainfall prediction based on optical flow methods that have been employed for operational precipitation nowcasting. By utilizing open-source libraries, such as OpenCV, and commonly applied machine learning techniques, such as multiple linear regression and U-Net networks, we propose an accessible model for enhancing prediction accuracy. We expect that the improvement in prediction accuracy will significantly improve the practical application of operational precipitation nowcasting.

Funder

Korea Meteorological Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference42 articles.

1. Agrawal, S., L. Barrington, C. Bromberg, J. Burge, C. Gazen, and J. Hickey, 2019: Machine learning for precipitation nowcasting from radar images. arXiv, 1912.12132v1, https://arxiv.org/abs/1912.12132.

2. Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1);Ayzel, G.,2019

3. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting;Ayzel, G.,2020

4. An enhanced optical flow technique for radar nowcasting of precipitation and winds;Bechini, R.,2017

5. Bouguet, J.-Y., 2000: Pyramidal implementation of the Affine Lucas Kanade feature tracker description of the algorithm. Intel Corporation Microprocessor Research Lab Tech. Rep., 10 pp., http://robots.stanford.edu/cs223b04/algo_affine_tracking.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3