Predicting Short-Term Intensity Change in Tropical Cyclones Using a Convolutional Neural Network

Author:

Griffin Sarah M.1ORCID,Wimmers Anthony1,Velden Christopher S.1

Affiliation:

1. a Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract This study details a two-method, machine learning approach to predict current and short-term intensity change in global tropical cyclones (TCs), “D-MINT” and “D-PRINT.” D-MINT and D-PRINT use infrared imagery and environmental scalar predictors, while D-MINT also employs microwave imagery. Results show that current TC intensity estimates from D-MINT and D-PRINT are more skillful than three established intensity estimation methods routinely used by operational forecasters for North Atlantic and eastern and western North Pacific TCs. Short-term intensity predictions are validated against five operational deterministic guidances at 6-, 12-, 18-, and 24-h lead times. D-MINT and D-PRINT are less skillful than NHC and consensus TC intensity predictions in North Atlantic and eastern North Pacific TCs, but are more skillful than the other guidances for at least half of the lead times. In western North Pacific, north Indian Ocean, and Southern Hemisphere TCs, D-MINT is more skillful than the JTWC and other individual TC intensity forecasts for over half of the lead times. When probabilistically predicting TC rapid intensification (RI), D-MINT is more skillful in North Atlantic and western North Pacific TCs than three operationally used RI guidances, but less skillful for yes–no RI forecasts. In addition, this work demonstrates the importance of microwave imagery, as D-MINT is more skillful than D-PRINT. Since D-MINT and D-PRINT are convolutional neural network models interrogating two-dimensional structures within TC satellite imagery, this study also demonstrates that those features can yield better short-term predictions than existing scalar statistics of satellite imagery in operational models. Finally, a diagnostics tool is revealed to aid the attribution of the D-MINT/D-PRINT intensity predictions. Significance Statement This study develops a method to predict current and short-term forecasts of tropical cyclone (TC) intensity using artificial intelligence. The resultant models use a convolutional neural network (CNN) that can identify two-dimensional features in satellite imagery that are indicative of TC intensity and future intensity change. The performance results indicate that in several TC basins, the CNN approach is generally more skillful than alternative satellite-based estimates of TC intensity as well as operational short-term forecasts of deterministic intensity change and of similar skill to probabilistic rapid intensification forecasts.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. Precipitation properties observed during tropical cyclone intensity change;Alvey, G. R., III,2015

2. Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center;Cangialosi, J. P.,2020

3. Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks;Chen, B.-F.,2019

4. Cossuth, J., S. Yang, K. Richardson, M. Surratt, J. Solbrig, and J. Hawkins, 2013: Creating a consistent climatology of tropical cyclone structure as observed by satellite microwave sensors. Special Symp. on the Next Level of Predictions in Tropical Meteorology: Techniques, Usage, Support, and Impacts, Austin, TX, Amer. Meteor. Soc., TJ25.5, https://ams.confex.com/ams/93Annual/webprogram/Paper220790.html.

5. A simplified dynamical system for tropical cyclone intensity prediction;DeMaria, M.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3