The 2021 Hazardous Weather Testbed Experimental Warning Program Radar Convective Applications Experiment: A Forecaster Evaluation of the Tornado Probability Algorithm and the New Mesocyclone Detection Algorithm

Author:

Sandmæl Thea N.12,Smith Brandon R.12,Madden Jonathan G.12,Monroe Justin W.12,Hyland Patrick T.12,Schenkel Benjamin A.123,Meyer Tiffany C.12

Affiliation:

1. a Cooperative Institute for High-Impact and Severe Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. c School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Developed as part of a larger effort by the National Weather Service (NWS) Radar Operations Center to modernize their suite of single-radar severe weather algorithms for the WSR-88D network, the Tornado Probability Algorithm (TORP) and the New Mesocyclone Detection Algorithm (NMDA) were evaluated by operational forecasters during the 2021 National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) Experimental Warning Program Radar Convective Applications experiment. Both TORP and NMDA leverage new products and advances in radar technology to create rotation-based objects that interrogate single-radar data, providing important summary and trend information that aids forecasters in issuing time-critical and potentially life-saving weather products. Utilizing virtual resources like Google Workspace and cloud instances on Amazon Web Services, 18 forecasters from the NOAA/NWS and the U.S. Air Force participated remotely over three weeks during the spring of 2021, providing valuable feedback on the efficacy of the algorithms and their display in an operational warning environment, serving as a critical step in the research-to-operations process for the development of TORP and NMDA. This article will discuss the details of the virtual HWT experiment and the results of each algorithm’s evaluation during the testbed. Significance Statement Before transitioning newly developed radar-based severe weather applications to forecasting operations, an experiment simulating the use of these tools by end users issuing severe weather warnings is helpful to identify both how they are best utilized and address any needed improvements to increase their operational readiness. Conducted in 2021, this study describes the forecaster evaluation of the single-radar Tornado Probability Algorithm (TORP) and the New Mesocyclone Detection Algorithm (NMDA) in one of the first completely virtual Hazardous Weather Testbed (HWT) experiments. Participants stated both TORP and NMDA offered marked improvement over the currently available algorithms by helping the operational forecaster build their confidence when issuing severe weather warnings and increasing their overall situational awareness of storms within their domain.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Toward a user-centered design of a weather forecasting decision-support tool;Argyle, E. M.,2017

2. Random forests;Breiman, L.,2001

3. Tornado probability of detection and lead time as a function of convective mode and environmental parameters;Brotzge, J. A.,2013

4. The experimental warning program of NOAA’s Hazardous Weather Testbed;Calhoun, K. M.,2021

5. Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties;Cintineo, J. L.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3