Performance of Decision-Tree-Based Ensemble Classifiers in Predicting Fog Frequency in Ungauged Areas

Author:

Kim Daeha1ORCID,Kim Eunhee1,Kim Eunji1

Affiliation:

1. a Department of Civil Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, South Korea

Abstract

Abstract Fog is a phenomenon that exerts significant impacts on transportation, aviation, air quality, agriculture, and even water resources. While data-driven machine learning algorithms have shown promising performance in capturing nonlinear fog events at point locations, their applicability to different areas and time periods is questionable. This study addresses this issue by examining five decision-tree-based classifiers in a South Korean region, where diverse fog formation mechanisms are at play. The five machine learning algorithms were trained at point locations and tested with other point locations for time periods independent of the training processes. Using the ensemble classifiers and high-resolution atmospheric reanalysis data, we also attempted to establish fog occurrence maps in a regional area. Results showed that machine learning models trained on the local datasets exhibited superior performance in mountainous areas, where radiative cooling predominantly contributes to fog formation, compared to inland and coastal regions. As the fog generation mechanisms diversified, the tree-based ensemble models appeared to encounter challenges in delineating their decision boundaries. When they were trained with the reanalysis data, their predictive skills were significantly decreased, resulting in high false alarm rates. This prompted the need for postprocessing techniques to rectify overestimated fog frequency. While postprocessing may ameliorate overestimation, caution is needed to interpret the resultant fog frequency estimates, especially in regions with more diverse fog generation mechanisms. The spatial upscaling of machine learning–based fog prediction models poses challenges owing to the intricate interplay of various fog formation mechanisms, data imbalances, and potential inaccuracies in reanalysis data.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference60 articles.

1. The potential contribution of soil moisture to fog formation in the Namib Desert;Adhikari, B.,2020

2. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 333 pp., http://www.climasouth.eu/sites/default/files/FAO%2056.pdf.

3. Influence of environmental conditions on forecasting of an advection-radiation fog: A case study from the Casablanca region, Morocco;Bari, D.,2018

4. Machine-learning regression applied to diagnose horizontal visibility from mesoscale NWP model forecasts;Bari, D.,2020

5. Fog prediction for road traffic safety in a coastal desert region: Improvement of nowcasting skills by the machine-learning approach;Bartoková, I.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3