Influence of Precipitation Assimilation on a Regional Climate Model’s Surface Water and Energy Budgets

Author:

Nunes Ana M. B.1,Roads John O.1

Affiliation:

1. Experimental Climate Prediction Center, Climate Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract Initialization of the moisture profiles has been used to overcome the imbalance between analysis schemes and prediction models that generates the so-called spinup problem seen in the hydrological fields. Here precipitation assimilation through moisture adjustment has been proposed as a technique to reduce this problem in regional climate simulations by adjusting the specific humidity according to 3-hourly North American Regional Reanalysis rain rates during two simulated years: 1988 and 1993. A control regional simulation provided the initial condition fields for both simulations. The precipitation assimilation simulation was then compared to the control regional climate simulation, reanalyses, and observations to determine whether assimilation of precipitation had a positive influence on modeled surface water and energy budget terms. In general, rainfall assimilation improved the regional model surface water and energy budget terms over the conterminous United States. Precipitation and runoff correlated better than the control and the global reanalysis fields to the regional reanalysis and available observations. Upward shortwave and downward short- and longwave radiation fluxes had regional seasonal cycles closer to the observed values than the control, and the near-surface temperature anomalies were also improved.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. An initialization method to incorporate precipitation data into a mesoscale numerical weather prediction model.;Aonashi;J. Meteor. Soc. Japan,1993

2. Assessment of land-surface energy budgets from regional and global models.;Berbery;J. Geophys. Res.,1999

3. The land surface–atmosphere interaction: A review based on observational and global modeling perspectives.;Betts;J. Geophys. Res.,1996

4. Campana, K. A., Y. T.Hou, K. E.Mitchell, S. K.Yang, and R.Cullather, 1994: Improved diagnostic cloud parameterization in NMC’s global model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 324–325.

5. A solar-radiation model for use in climate studies.;Chou;J. Atmos. Sci.,1992

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3