Temporal Variability of Diapycnal Mixing in Shag Rocks Passage

Author:

Damerell Gillian M.1,Heywood Karen J.1,Stevens David P.2,Naveira Garabato Alberto C.3

Affiliation:

1. School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

2. School of Mathematics, University of East Anglia, Norwich, United Kingdom

3. School of Ocean and Earth Science, National Oceanography Centre, Southampton, United Kingdom

Abstract

Abstract Diapycnal mixing rates in the oceans have been shown to have a great deal of spatial variability, but the temporal variability has been little studied. Here results are presented from a method developed to calculate diapycnal diffusivity from moored acoustic Doppler current profiler (ADCP) velocity shear profiles. An 18-month time series of diffusivity is presented from data taken by a LongRanger ADCP moored at 2400-m depth, 600 m above the seafloor, in Shag Rocks Passage, a deep passage in the North Scotia Ridge (Southern Ocean). The Polar Front is constrained to pass through this passage, and the strong currents and complex topography are expected to result in enhanced mixing. The spatial distribution of diffusivity in Shag Rocks Passage deduced from lowered ADCP shear is consistent with published values for similar regions, with diffusivity possibly as large as 90 × 10−4 m2 s−1 near the seafloor, decreasing to the expected background level of ~0.1 × 10−4 m2 s−1 in areas away from topography. The moored ADCP profiles spanned a depth range of 2400–1800 m; thus, the moored time series was obtained from a region of moderately enhanced diffusivity. The diffusivity time series has a median of 3.3 × 10−4 m2 s−1 and a range from 0.5 × 10−4 to 57 × 10−4 m2 s−1. There is no significant signal at annual or semiannual periods, but there is evidence of signals at periods of approximately 14 days (likely due to the spring–neap tidal cycle) and at periods of 3.8 and 2.6 days most likely due to topographically trapped waves propagating around the local seamount. Using the observed stratification and an axisymmetric seamount, of similar dimensions to the one west of the mooring, in a model of baroclinic topographically trapped waves, produces periods of 3.8 and 2.6 days, in agreement with the signals observed. The diffusivity is anticorrelated with the rotary coefficient (indicating that stronger mixing occurs during times of upward energy propagation), which suggests that mixing occurs due to the breaking of internal waves generated at topography.

Publisher

American Meteorological Society

Subject

Oceanography

Reference69 articles.

1. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions;Alford;J. Phys. Oceanogr.,2001

2. Improved global maps and 54-year history of wind-work on ocean inertial motions;Alford;Geophys. Res. Lett.,2003

3. Redistribution of energy available for ocean mixing by long-range propagation of internal waves;Alford;Nature,2003

4. The Antarctic Circumpolar Current between the Falkland Islands and South Georgia;Arhan;J. Phys. Oceanogr.,2002

5. Generation of internal tides by flat-bump topography;Baines;Deep-Sea Res.,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3