The Vertical Structure of Tropical Convection and Its Impact on the Budgets of Water Vapor and Ozone

Author:

Folkins Ian1,Martin Randall V.1

Affiliation:

1. Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

Abstract

Abstract Convective clouds in the Tropics that penetrate the boundary layer inversion preferentially detrain into a shallow outflow layer (2–5 km) or a deep outflow layer (10–17 km). The properties of these layers are diagnosed from a one-dimensional model of the Tropics constrained by observed mean temperature and water vapor profiles. The mass flux divergence of the shallow cumuli (2–5 km) is balanced by a mass flux convergence of evaporatively forced descent (downdrafts), while the mass flux divergence of deep cumulonimbus clouds (10–17 km) is balanced by a mass flux convergence of clear-sky radiative descent. The pseudoadiabatic temperature stratification of the midtroposphere (5–10 km) suppresses cloud outflow in this interval. The detrainment profile in the deep outflow layer is shifted downward by about 1.5 km from the profile one would anticipate based on undilute pseudoadiabatic ascent of air from the boundary layer. The main source of water vapor to most of the tropical troposphere is evaporative moistening. Below 12 km, evaporatively forced descent plays an important role in the vertical mass flux budget of the Tropics. This gives rise to a coupling between the water vapor and mass flux budgets, which, between 5 and 10 km, provides a constraint on the variation of relative humidity with height. Between 12 and 15 km, the observed relative humidity profile can be reproduced by assuming a simple first-order balance between detrainment moistening and subsidence drying. The mean ozone profile of the Tropics can be reproduced using a simple one-dimensional model constrained by the cloud mass flux divergence profile of the diagnostic model.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3