Deep Cyclonic Circulation in the Gulf of Mexico

Author:

DeHaan Christopher J.1,Sturges Wilton1

Affiliation:

1. Department of Oceanography, The Florida State University, Tallahassee, Florida

Abstract

Abstract The anticyclonic Loop Current dominates the upper-layer flow in the eastern Gulf of Mexico, with a weaker mean anticyclonic pattern in the western gulf. There are reasons, however, to suspect that the deep mean flow should actually be cyclonic. Topographic wave rectification and vortex stretching contribute to this cyclonic tendency, as will the supply of cold incoming deep water at the edges of the basin. The authors find that the deep mean flow is cyclonic both in the eastern and western gulf, with speeds on the order of 1–2 cm s−1 at 2000 m. Historical current-meter mooring data, as well as profiling autonomous Lagrangian circulation explorer (PALACE) floats (at 900 m), suggest that vertical geostrophic shear relative to 1000 m gives a surprisingly accurate result in the interior of the basin. The temperature around the edges of the basin at 2000 m is coldest near the Yucatan Channel, where Caribbean Sea water is colder by ∼0.1°C. The temperature increases steadily with distance in the counterclockwise direction from the Yucatan, consistent with a deep mean cyclonic boundary flow.

Publisher

American Meteorological Society

Subject

Oceanography

Reference17 articles.

1. Deep flows in the Yucatan Channel and their relation to changes in the Loop Current extension.;Bunge;J. Geophys. Res.,2002

2. Conkright, M. E. , and Coauthors, 2000: World ocean database 1998. Ocean Climate Laboratory Tech. Rep. 14, National Oceanographic Data Center, 114 pp.

3. The autonomous Lagrangian circulation explorer (ALACE).;Davis;J. Atmos. Oceanic Technol.,1992

4. Deep currents in the Gulf of Mexico.;Hamilton;J. Phys. Oceanogr.,1990

5. Hamilton, P., J. J.Singer, E.Waddell, and K.Donohue, 2003: Deepwater observations in the northern Gulf of Mexico from in-situ current meters and PIES. OCS Study MMS 2003-049, Final Report to U.S. Minerals Management Service, Vol. 2, Gulf of Mexico OCS Region, 95 pp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3