Quantifying the Airflow Distortion over Merchant Ships. Part II: Application of the Model Results

Author:

Moat Bengamin I.1,Yelland Margaret J.1,Molland Anthony F.2

Affiliation:

1. National Oceanography Centre, Southampton, United Kingdom

2. School of Engineering Sciences, Ship Science, University of Southampton, Southampton, United Kingdom

Abstract

Abstract Wind speed measurements obtained from ship-mounted anemometers are biased by the presence of the ship, which distorts the airflow to the anemometer. Previous studies have simulated the flow over detailed models of individual research ships in order to quantify the effect of flow distortion at well-exposed anemometers, usually sited on a mast in the ship's bows. In contrast, little work has been undertaken to examine the effects of flow distortion at anemometers sited on other merchant ships participating in the voluntary observing ship (VOS) project. Anemometers are usually sited on a mast above the bridge of VOS where the effects of flow distortion may be severe. The several thousand VOS vary a great deal in shape and size and it would be impractical to study each individual ship. This study examines the airflow above the bridge of a typical, or generic, tanker/bulk carrier/general cargo ship using computational fluid dynamics models. The results show that the airflow separates at the upwind leading edge of the bridge and a region of severely decelerated flow exists close to the bridge top with a region of accelerated flow above. Large velocity gradients occur between the two regions. The wind speed bias is highly dependent upon the anemometer location and varies from accelerations of 10% or more to decelerations of 100%. The wind speed bias at particular locations also varies with the relative wind direction, that is, the angle of the ship to the wind. Wind speed biases for various anemometer positions are given for bow-on and beam-on flows.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference20 articles.

1. Tower shadow effect.;Cermak;J. Geophys. Res.,1968

2. Ship’s influence on wind measurements determined from BOMEX mast and boom data.;Ching;J. Appl. Meteor.,1976

3. Tower induced errors in wind profile measurements.;Dabberdt;J. Appl. Meteor.,1968

4. Wind disturbance by a vertical cylinder in the atmospheric boundary layer.;Dabberdt;J. Appl. Meteor.,1968

5. Dobson, F. W. , 1981: Review of reference height for and averaging time of surface wind measurements at sea. Marine Meteorology and Related Oceanographic Activities Rep. 3, WMO, Geneva, Switzerland, 64 pp. [Available from World Meteorological Organization, Case Postale 5, CH-1211 Geneva 20, Switzerland.].

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3