Evaporation and Condensation of Large Droplets in the Presence of Inert Admixtures Containing Soluble Gas

Author:

Elperin T.1,Fominykh A.1,Krasovitov B.1

Affiliation:

1. Department of Mechanical Engineering, The Pearlstone Center for Aeronautical Engineering Studies, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

Abstract In this study the mutual influence of heat and mass transfer during gas absorption and evaporation or condensation on the surface of a stagnant droplet in the presence of inert admixtures containing noncondensable soluble gas is investigated numerically. The performed analysis is pertinent to slow droplet evaporation or condensation. The system of transient conjugate nonlinear energy and mass conservation equations was solved using anelastic approximation. Using the material balance at the droplet surface the authors obtained equations for Stefan velocity and the rate of change of the droplet radius taking into account the effect of soluble gas absorption at the gas–liquid interface. The authors also derived boundary conditions at gas–liquid interface taking into account the effect of nonisothermal gas absorption. It is demonstrated that the average concentration of the dissolved species in a droplet strongly depends on the relative humidity (RH) for highly soluble and for slightly soluble gaseous atmospheric pollutants. Therewith the difference between the average concentration of the dissolved species in water droplets attains tens of percent for different values of RH.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3