A Nonhydrostatic Multiscale Model on the Uniform Jacobian Cubed Sphere

Author:

Rančić Miodrag1,Purser R. James1,Jović Dušan1,Vasic Ratko1,Black Thomas2

Affiliation:

1. I. M. Systems Group, Inc., NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

2. NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

Abstract

The rapid expansion of contemporary computers is expected to enable operational integrations of global models of the atmosphere at resolutions close to 1 km, using tens of thousands of processors in the foreseeable future. Consequently, the algorithmic approach to global modeling of the atmosphere will need to change in order to better adjust to the new computing environment. One simple and convenient solution is to use low-order finite-differencing models, which generally require only local exchange of messages between processing elements, and thus are more compatible with the new computing environment. These models have already been tested with physics and are well established at high resolutions over regional domains. A global nonhydrostatic model, the Nonhydrostatic Multiscale Model on the B grid (NMMB), developed at the Environmental Modeling Center of the National Centers for Environmental Prediction during the first decade of this century is one such model. A drawback of the original version of global NMMB is that it is discretized on the standard longitude–latitude grid and requires application of Fourier polar filtering, which is relatively inefficient on massively parallel computers. This paper describes a reformulation of the NMMB on the grid geometry of a novel cubed sphere featuring a uniform Jacobian of the horizontal mapping, which provides a uniform resolution close to that of the equiangular gnomonic cubed sphere, but with a smooth transition of coordinates across the edges. The modeling approach and encountered challenges are discussed and several results are shown that demonstrate the viability of the approach.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3