Object-Based Metrics for Forecast Verification of Convective Development with Geostationary Satellite Data

Author:

Rempel Martin1,Senf Fabian1,Deneke Hartwig1

Affiliation:

1. Leibniz Institute for Tropospheric Research, Leipzig, Germany

Abstract

Object-based metrics are adapted and applied to geostationary satellite observations with the evaluation of cloud forecasts in convective situations as the goal. Forecasts of the convection-permitting German-focused Consortium for Small-Scale Modeling (COSMO-DE) numerical model are transformed into synthetic observations using the RTTOV radiative transfer model, and contrasted with the corresponding real observations. Threshold-based segmentation techniques are applied to the fields for object identification. The statistical properties of the traditional measures cold cloud cover and average brightness temperature amplitude are contrasted to object-based metrics of spatial aggregation and object structure. Based on 59 case days from the summer half-years between 2012 and 2014, a variance decomposition technique is applied to the time series of the metrics to identify deficits in day-to-day, diurnal, and weather-regime-related variability of cold cloud characteristics in the forecasts. Furthermore, sensitivities of the considered metrics are discussed, which result from uncertainties in the satellite forward operator and from the choice of parameters in the object identification techniques.

Funder

Bundesministerium für Bildung und Forschung

Bundesministeriums für Verkehr, Bau und Stadtentwicklung

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3