Interaction of an Upper-Tropospheric Jet with a Squall Line Originating along a Cold Frontal Boundary

Author:

Stechman Daniel M.1,Rauber Robert M.1,McFarquhar Greg M.1,Jewett Brian F.1,Jorgensen David P.2

Affiliation:

1. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

2. National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractOn 8 June 2003, an expansive squall line along a surface cold frontal boundary was sampled during the Bow Echo and Mesoscale Convective Vortex Experiment. The Naval Research Laboratory P-3 aircraft and the National Oceanic and Atmospheric Administration P-3 aircraft simultaneously sampled the leading and trailing edge of this squall line, respectively, with X-band Doppler radars. Data from these two airborne radar systems have been synthesized to produce a pseudo-quad-Doppler analysis of the squall line, yielding a detailed three-dimensional kinematic analysis of its structure. A simulation of the squall line was carried out using the Weather Research and Forecasting Model to complement the pseudo-quad-Doppler analysis. The simulation employed a 3-km, convection-allowing, nested domain centered over the pseudo-quad-Doppler domain, along with a 9-km parent domain to capture the larger synoptic-scale cyclone.The pseudo-quad-Doppler analysis reveals that the convective line was embedded within the upper-tropospheric jet stream, causing local decelerations and deviations in the jet-level flow. The vertical transport of low momentum air from the boundary layer via convective updrafts is shown to significantly decelerate jet-level flow. Pressure perturbations associated with the intrusion of low momentum air into the jet stream–level flow led to deviation of the jet stream flow around the squall line that resulted in counter-rotating ribbons of vertical vorticity parallel to the squall line. Model results indicate that disturbances in the jet stream structure persisted downwind of the squall line for several hours.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3