Perturbing Surface Initial Conditions in a Regional Ensemble Prediction System

Author:

Bellus Martin1,Wang Yong2,Meier Florian2

Affiliation:

1. NWP Division, Slovak Hydro-meteorological Institute, Bratislava, Slovakia

2. Department of Forecasting Models, Central Institute for Meteorology and Geodynamics, Vienna, Austria

Abstract

Two techniques for perturbing surface initial conditions in the regional ensemble system Aire Limitée Adaptation Dynamique Développement International-Limited Area Ensemble Forecasting (ALADIN-LAEF) are presented and investigated in this paper. The first technique is the noncycling surface breeding (NCSB), which combines short-range surface forecasts driven by perturbed atmospheric forcing and the breeding method for generating the perturbations on surface initial conditions. The second technique, which is currently used in the ALADIN-LAEF operational version, applies an ensemble of surface data assimilations (ESDA) in which the observations are randomly perturbed. Both techniques are evaluated over a two-month period from late spring to summer. The results show that the evaluation is more favorable to ESDA. In general, the ensemble forecasts of the observed near-surface meteorological variables (screen-level variables) of ESDA are more skillful than NCSB, in particular for 2-m temperature they are statistically more consistent and reliable. A slightly better statistical reliability for 2-m relative humidity and 10-m wind has been found as well. This could be attributed to the introduction of surface data assimilation in ESDA, which provides more accurate surface initial conditions. Moreover, the observation perturbation in ESDA helps to better estimate the initial condition uncertainties. For the forecast of precipitation and the upper-air variables in the lower troposphere, both ESDA and NCSB perform very similarly, having neutral impact.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3