A Monte Carlo Background Covariance Localization Method for an Ensemble–Variational Assimilation System

Author:

Pasmans Ivo1,Kurapov Alexander L.1

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Spurious long-distance correlations in estimates of the background error covariance can deteriorate the performance of ensemble-based data assimilation methods. In this study, a localization method, called Monte Carlo (MC) localization, is presented to remove these correlations. It is particularly useful for use in high-dimensional ensemble–variational data assimilation systems. In this method, raw ensemble members are truncated by multiplying them with functions having compact support. This creates a larger ensemble, in which points spaced farther apart than the size of the compact support have zero correlation. The localized background error covariance is then estimated as the sample covariance of this larger ensemble. It is hypothesized that this localized background error covariance can be approximated by the MC approximation method using a limited set of the truncated ensemble members. This hypothesis is tested here on a grid with 1001 grid points and assuming a Gaussian true background error covariance. It is found that the mean relative error has an upper bound that scales with the inverse square root of the number of truncated ensemble members. In the case studied the size of the support for which the localized background covariance best approximates the true background covariance increases with increasing number of raw ensemble members and is close to 4 times the standard deviation of the Gaussian when 20 raw ensemble members are used. In the Fourier space the localization manifests itself as a convolution resulting in smoothing of the power spectral density of the ensemble members.

Funder

National Oceanic and Atmospheric Administration

XSEDE

Jet Propulsion Laboratory

Integrated Ocean Observing System

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3