Assimilation of Pseudo-GLM Data Using the Ensemble Kalman Filter

Author:

Allen Blake J.1,Mansell Edward R.2,Dowell David C.3,Deierling Wiebke4

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. NOAA/OAR/Earth System Research Laboratory, Boulder, Colorado

4. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Total lightning observations that will be available from the GOES-R Geostationary Lightning Mapper (GLM) have the potential to be useful in the initialization of convection-resolving numerical weather models, particularly in areas where other types of convective-scale observations are sparse or nonexistent. This study used the ensemble Kalman filter (EnKF) to assimilate real-data pseudo-GLM flash extent density (FED) observations at convection-resolving scale for a nonsevere multicell storm case (6 June 2000) and a tornadic supercell case (8 May 2003). For each case, pseudo-GLM FED observations were generated from ground-based lightning mapping array data with a spacing approximately equal to the nadir pixel width of the GLM, and tests were done to examine different FED observation operators and the utility of temporally averaging observations to smooth rapid variations in flash rates. The best results were obtained when assimilating 1-min temporal resolution data using any of three observation operators that utilized graupel mass or graupel volume. Each of these three observation operators performed well for both the weak, disorganized convection of the multicell case and the much more intense convection of the supercell case. An observation operator using the noninductive charging rate performed poorly compared to the graupel mass and graupel volume operators, a result that appears likely to be due to the inability of the noninductive charging rate to account for advection of space charge after charge separation occurs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. The Effect of Assimilating Rain Rates Derived from Satellites and Lightning on Forecasts of the 1993 Superstorm

2. The effect on thunderstorm charging of the rate of rime accretion by graupel

3. Electrical and Polarimetric Radar Observations of a Multicell Storm in TELEX

4. Burgess, D. W., 2004: High resolution analyses of the 8 May 2003 Oklahoma City storm. Part I: Storm structure and evolution from radar data.22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.4. [Available online athttps://ams.confex.com/ams/11aram22sls/techprogram/paper_81939.htm.]

5. Numerical Simulations of Lightning and Storm Charge of the 29–30 May 2004 Geary, Oklahoma, Supercell Thunderstorm Using EnKF Mobile Radar Data Assimilation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3