A Conceptual Model for Development of Intense Pyrocumulonimbus in Western North America

Author:

Peterson David A.1,Hyer Edward J.1,Campbell James R.1,Solbrig Jeremy E.2,Fromm Michael D.3

Affiliation:

1. Naval Research Laboratory, Monterey, California

2. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

3. Naval Research Laboratory, Washington, D.C.

Abstract

Abstract The first observationally based conceptual model for intense pyrocumulonimbus (pyroCb) development is described by applying reanalyzed meteorological model output to an inventory of 26 intense pyroCb events from June to August 2013 and a control inventory of intense fire activity without pyroCb. Results are based on 88 intense wildfires observed within the western United States and Canada. While surface-based fire weather indices are a useful indicator of intense fire activity, they are not a skillful predictor of intense pyroCb. Development occurs when a layer of increased moisture content and instability is advected over a dry, deep, and unstable mixed layer, typically along the leading edge of an approaching disturbance or under the influence of a monsoonal anticyclone. Upper-tropospheric dynamics are conducive to rising motion and vertical convective development. Mid- and upper-tropospheric conditions therefore resemble those that produce traditional dry thunderstorms. The specific quantity of midlevel moisture and instability required is shown to be strongly dependent on the surface elevation of the contributing fire. Increased thermal buoyancy from large and intense wildfires can serve as a potential trigger, implying that pyroCb occasionally develop in the absence of traditional meteorological triggering mechanisms. This conceptual model suggests that meteorological conditions favorable for pyroCb are observed regularly in western North America. PyroCb and ensuing stratospheric smoke injection are therefore likely to be significant and endemic features of summer climate. Results from this study provide a major step toward improved detection, monitoring, and prediction of pyroCb, which will ultimately enable improved understanding of the role of this phenomenon in the climate system.

Funder

National Aeronautics and Space Administration

U.S. Naval Research Laboratory

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference81 articles.

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3