A Machine Learning Approach to Modeling Tropical Cyclone Wind Field Uncertainty

Author:

Loridan Thomas1,Crompton Ryan P.1,Dubossarsky Eugene2

Affiliation:

1. Risk Frontiers, Macquarie University, Sydney, Australia

2. Presciient, Sydney, Australia

Abstract

Tropical cyclone (TC) risk assessment models and probabilistic forecasting systems rely on large ensembles to simulate the track trajectories, intensities, and spatial distributions of damaging winds from severe events. Given computational constraints associated with the generation of such ensembles, the representation of TC winds is typically based on very simple parametric formulations. Such models strongly underestimate the full range of TC wind field variability and thus do not allow for accurate representation of the risk profile. With this in mind, this study explores the potential of machine learning algorithms as an alternative to current parametric methods. First, a catalog of high-resolution TC wind simulations is assembled for the western North Pacific using the Weather Research and Forecasting (WRF) Model. The simulated wind fields are then decomposed via principal component analysis (PCA) and a quantile regression forest model is trained to predict the conditional distributions of the first three principal component (PC) weights. With this model, predictions can be made for any quantiles in the distributions of the PC weights thereby providing a way to account for uncertainty in the modeled wind fields. By repeatedly sampling the quantile values, probabilistic maps for the likelihood of attaining given wind speed thresholds can be easily generated. Similarly the inclusion of such a model as part of a TC risk assessment framework can greatly increase the range of wind field patterns sampled, providing a broader view of the threat posed by TC winds.

Funder

Risk Frontiers

National Computational Infrastructure

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3