Collecting Empirically Derived SAR Characteristic Values over One Year of Sea Ice Environments for Use in Data Assimilation

Author:

Pogson Lynn1,Geldsetzer Torsten1,Buehner Mark2,Carrieres Tom3,Ross Michael4,Scott K. Andrea5

Affiliation:

1. Canadian Ice Service, Environment and Climate Change Canada, Ottawa, Ontario, Canada

2. Data Assimilation and Satellite Meteorology Research, Environment and Climate Change Canada, Dorval, Quebec, Canada

3. Canadian Ice Service, Environment and Climate Change Canada, Dorval, Quebec, Canada

4. RER Energy Inc., Montreal, Quebec, Canada

5. University of Waterloo, Waterloo, Ontario, Canada

Abstract

Abstract A new tool has been developed to calculate dynamic, state-specific tie points, to aid in the assimilation of various types of satellite data into Environment and Climate Change Canada’s Regional Ice Ocean Prediction System. These tie points are referred to as characteristic values (CVs). In this study, CVs are calculated for RadarSat-2 ScanSAR-Wide-A HH-HV backscatter data from October 2010 to September 2011. In this collection, the mean, standard deviation, and percentile distribution of backscatter at locations and times identified as being either ice or open water are represented over different relevant categories affecting the signal. The resulting water CVs are compared with modeled backscatter values, and are in close agreement at midrange wind speeds (5–14 m s−1), where wind slicks are not present. When compared against previously reported values, the ice CVs correspond best for ice conditions with fairly uniform backscatter distributions, such as the Arctic during the spring. When the ice and water CVs are compared to each other, the best cases for the assimilation of RadarSat-2 data are evident. In these cases, the CV distributions at a given incidence angle and wind speed are well separated from each other, such as in the far range (40°–50°) at midrange wind speeds. This set of CVs will be used for an initial assimilation of binary ice and open water retrievals. Future work will include a more complex treatment of ice CVs to address mixed ice types, and the application of CVs to other types of satellite data, including those from passive microwave sensors.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3