Seasonal, Monthly, and Weekly Distributions of NLDN and GLD360 Cloud-to-Ground Lightning

Author:

Holle Ronald L.1,Cummins Kenneth L.2,Brooks William A.1

Affiliation:

1. Vaisala Inc., Tucson, Arizona

2. Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Abstract

Abstract Annual maps of cloud-to-ground lightning flash density have been produced since the deployment of the National Lightning Detection Network (NLDN). However, a comprehensive national summary of seasonal, monthly, and weekly lightning across the contiguous United States has not been developed. Cloud-to-ground lightning is not uniformly distributed in time, space, or frequency. Knowledge of these variations is useful for understanding meteorological processes responsible for lightning occurrence, planning outdoor events, anticipating impacts of lightning on power reliability, and relating to severe weather. To address this gap in documentation of lightning occurrence, the variability on seasonal, monthly, and weekly scales is first addressed with NLDN flash data from 2005 to 2014 for the 48 states and adjacent regions. Flash density and the percentage of each season’s portion of the annual total are compiled. In spring, thunderstorms occur most often over southeastern states. Lightning spreads north and west until by June, most areas have lightning. New England, the northern Rockies, most of Canada, and the Florida Peninsula have a small percentage of lightning outside of summer. Arizona and portions of adjacent states have the highest incidence in July and August. Flash densities reduce in September in most regions. This seasonal, monthly, and weekly overview complements a recent study of diurnal variations of flashes to document when and where lightning occurs over the United States. NLDN seasonal maps indicate a summer lightning dominance in the northern and western United States that extends into Canada using data compiled from GLD360 network observations. GLD360 also extends NLDN seasonal maps and percentages into Mexico, the Caribbean, and offshore regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3