Climatology Models for Extreme Hurricane Winds near the United States

Author:

Jagger Thomas H.1,Elsner James B.1

Affiliation:

1. Department of Geography, The Florida State University, Tallahassee, Florida

Abstract

Abstract The rarity of severe coastal hurricanes implies that empirical estimates of extreme wind speed return levels will be unreliable. Here climatology models derived from extreme value theory are estimated using data from the best-track [Hurricane Database (HURDAT)] record. The occurrence of a hurricane above a specified threshold intensity level is assumed to follow a Poisson distribution, and the distribution of the maximum wind is assumed to follow a generalized Pareto distribution. The likelihood function is the product of the generalized Pareto probabilities for each wind speed estimate. A geographic region encompassing the entire U.S. coast vulnerable to Atlantic hurricanes is of primary interest, but the Gulf Coast, Florida, and the East Coast regions are also considered. Model parameters are first estimated using a maximum likelihood (ML) procedure. Results estimate the 100-yr return level for the entire coast at 157 kt (±10 kt), but at 117 kt (±4 kt) for the East Coast region (1 kt = 0.514 m s−1). Highest wind speed return levels are noted along the Gulf Coast from Texas to Alabama. The study also examines how the extreme wind return levels change depending on climate conditions including El Niño–Southern Oscillation, the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, and global temperature. The mean 5-yr return level during La Niña (El Niño) conditions is 125 (116) kt, but is 140 (164) kt for the 100-yr return level. This indicates that La Niña years are the most active for the occurrence of strong hurricanes, but that extreme hurricanes are more likely during El Niño years. Although El Niño inhibits hurricane formation in part through wind shear, the accompanying cooler lower stratosphere appears to increase the potential intensity of hurricanes that do form. To take advantage of older, less reliable data, the models are reformulated using Bayesian methods. Gibbs sampling is used to integrate the prior over the likelihood to obtain the posterior distributions for the model parameters conditional on global temperature. Higher temperatures are conditionally associated with more strong hurricanes and higher return levels for the strongest hurricane winds. Results compare favorably with an ML approach as well as with recent modeling and observational studies. The maximum possible near-coastal wind speed is estimated to be 208 kt (183 kt) using the Bayesian (ML) approach.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference58 articles.

1. Dissipative heating and hurricane intensity.;Bister;Meteor. Atmos. Phys.,1998

2. Plotting early nineteenth century hurricane information.;Bossak;Eos, Trans. Amer. Geophys. Union,2004

3. Effect of El Niño on U.S. landfalling hurricanes, revisited.;Bove;Bull. Amer. Meteor. Soc.,1998

4. General methods for monitoring convergence of iterative simulations.;Brooks;J. Comput. Graphical Stat.,1998

5. Spatial regression models for extremes.;Casson;Extremes,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3