Great Salt Lake–Effect Precipitation: Observed Frequency, Characteristics, and Associated Environmental Factors

Author:

Alcott Trevor I.1,Steenburgh W. James1,Laird Neil F.2

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. Hobart and William Smith Colleges, Geneva, New York

Abstract

Abstract This climatology examines the environmental factors controlling the frequency, occurrence, and morphology of Great Salt Lake–effect (GSLE) precipitation events using cool season (16 September–15 May) Weather Surveillance Radar-1988 Doppler (WSR-88D) imagery, radiosonde soundings, and MesoWest surface observations from 1997/98 to 2009/10. During this period, the frequency of GSLE events features considerable interannual variability that is more strongly correlated to large-scale circulation changes than lake-area variations. Events are most frequent in fall and spring, with a minimum in January when the climatological lake surface temperature is lowest. Although forecasters commonly use a 16°C lake–700-hPa temperature difference (ΔT) as a threshold for GSLE occurrence, GSLE was found to occur in winter when ΔT was only 12.4°C. Conversely, GSLE is associated with much higher values of ΔT in the fall and spring. Therefore, a seasonally varying threshold based on a quadratic fit to the monthly minimum ΔT values during GSLE events is more appropriate than a single threshold value. A probabilistic forecast method based on the difference between ΔT and this seasonally varying threshold, 850–700-hPa relative humidity, and 700-hPa wind direction offers substantial improvement over existing methods, although forecast skill is diminished by temperature and moisture errors in operational models. An important consideration for forecasting because of their higher precipitation rates, banded features—with a horizontal aspect ratio of 6:1 or greater—dominate only 20% of the time that GSLE is occurring, while widespread, nonbanded precipitation is much more common. Banded periods are associated with stronger low-level winds and a larger lake–land temperature difference.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference38 articles.

1. Quantitative estimates of the effect of Lake Michigan on snowfall;Braham;J. Climate Appl. Meteor.,1984

2. The use of satellite and radar imagery to identify persistent shower bands downwind of the North Channel;Browning;Quart. J. Roy. Meteor. Soc.,1985

3. The lake effect of the Great Salt Lake: Overview and forecast problems;Carpenter;Wea. Forecasting,1993

4. Numerical simulation of transitions in boundary layer convective structures in a lake-effect snow event;Cooper;Mon. Wea. Rev.,2000

5. MODIS-derived surface temperature of the Great Salt Lake, 2008;Crosman;Remote Sens. Environ.,2010

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3