Planning for Winter Road Maintenance in the Context of Climate Change

Author:

Matthews Lindsay1ORCID,Andrey Jean1,Picketts Ian2

Affiliation:

1. Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada

2. Physical Sciences Division, Quest University Canada, Squamish, British Columbia, Canada

Abstract

Abstract Winter weather creates mobility challenges for most northern jurisdictions, leading to significant expenditures on winter road maintenance (WRM) activities. While the science and practice of snow and ice control is continually evolving, climate change presents particular challenges for the strategic planning of WRM. The purpose of this study is 1) to develop a winter severity index (WSI) to better understand how winter weather translates into interannual variations in WRM activities and 2) to apply the WSI to future climate change projections to assist a northern community in preparing for climate change. A new method for creating a WSI model is explored, using readily available data from maintenance records and meteorological stations. The WSI is created by optimizing values for three levels of snowfall as well as potential icing events and is shown to have high predictive accuracy for WRM (coefficient of determination R2 of 0.93). The WSI is then applied to historic and future climate data in a municipality located in central British Columbia, Canada. Findings reveal that much of the variability in WRM can be attributed to weather. The results of the climate change analysis show that winter precipitation in the region is expected to increase by 5.2%–12.3%, and winter average temperatures are projected to increase by 1.5°–2.8°C in the 2050s, compared to the 1976–2000 baseline based on 65 GCMs. Based on the midrange (25th to 75th percentiles) of the 65 GCM projections, annual demand for WRM activities is estimated to decrease by 13.0%–22.0%.

Funder

The City of Prince George

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3