Assessing the Performance of a Vulnerability Index during Oppressive Heat across Georgia, United States

Author:

Maier George1,Grundstein Andrew2,Jang Woncheol3,Li Chao4,Naeher Luke P.5,Shepherd Marshall2

Affiliation:

1. School of City and Regional Planning, Georgia Institute of Technology, Atlanta, Georgia

2. Department of Geography, The University of Georgia, Athens, Georgia

3. Department of Statistics, Seoul National University, Seoul, South Korea

4. Department of Epidemiology and Biostatistics, The University of Georgia, Athens, Georgia

5. Department of Environmental Health Science, The University of Georgia, Athens, Georgia

Abstract

Abstract Extreme heat is the leading weather-related killer in the United States. Vulnerability to extreme heat has previously been identified and mapped in urban areas to improve heat morbidity and mortality prevention efforts. However, only limited work has examined vulnerability outside of urban locations. This study seeks to broaden the geographic context of earlier work and compute heat vulnerability across the state of Georgia, which offers diverse landscapes and populations with varying sociodemographic characteristics. Here, a modified heat vulnerability index (HVI) developed by Reid et al. is used to characterize vulnerability by county. About half of counties with the greatest heat vulnerability index scores contain the larger cities in the state (i.e., Athens, Atlanta, Augusta, Columbus, Macon, and Savannah), while the other half of high-vulnerability counties are located in more rural counties clustered in southwestern and east-central Georgia. The source of vulnerability varied between the more urban and rural high-vulnerability counties, with poverty and population of nonwhite residents driving vulnerability in the more urban counties and social isolation/population of elderly/poor health the dominant factor in the more rural counties. Additionally, the effectiveness of the HVI in identifying vulnerable populations was investigated by examining the effect of modification of the vulnerability index score with mortality during extreme heat. Except for the least vulnerable categories, the relative risk of mortality increases with increasing vulnerability. For the highest-vulnerability counties, oppressively hot days lead to a 7.7% increase in mortality.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3