Drivers’ Awareness of and Response to Two Significant Winter Storms Impacting a Metropolitan Area in the Intermountain West: Implications for Improving Traffic Flow in Inclement Weather

Author:

Barjenbruch Kevin1,Werner Carol M.2,Graham Randall1,Oppermann Cody3,Blackwelder Glenn3,Williams Jeff3,Merrill Glen1,Jensen Scott4,Connolly Justin4

Affiliation:

1. National Weather Service, Salt Lake City, Utah

2. University of Utah, Salt Lake City, Utah

3. Traffic Operations Center, Utah Department of Transportation, Salt Lake City, Utah

4. Weathernet, Salt Lake City, Utah

Abstract

Abstract Over the past several decades, Utah has experienced rapid population growth, resulting in increased demand on Utah’s existing interstate and arterial infrastructure. In the Salt Lake City, Utah, metropolitan area, recurring traffic congestion (i.e., peak commute times) and nonrecurring congestion (weather related) result in an estimated average annual cost of $449 million. Recent Utah Department of Transportation (UDOT) studies have confirmed that inclement weather plays a significant role in nonrecurring congestion and associated negative impacts. In an effort to measure and potentially mitigate weather-related traffic congestion, a cooperative research study between academic (University of Utah), state [Utah Department of Transportation (UDOT)], federal (National Weather Service), and private sector (Weathernet) entities was undertaken. Driver awareness surveys were conducted for two significant winter storms along the Wasatch Front urban corridor. Participants typically used media and personal sources for gathering weather and road information, with government sources (UDOT and NWS) used less frequently. Use of government and personal sources were significant predictors of behavior change. Satisfaction with all information sources was high. The most frequent commuting changes reported were route changes and shifts in travel schedule, especially leaving early to avoid the storm. Self-reported actions from interviewees were supported by measured changes in speed, flow, and travel time from the Performance Measurement System (PeMS) utilized by UDOT. The long-term goal is to use these results to provide insight into how the weather enterprise might more effectively communicate hazard information to the public in a manner that leads to improved response (change travel times, modes, etc.).

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3