Toward the Probabilistic Simulation of Storm Surge and Inundation in a Limited-Resource Environment

Author:

Davis Justin R.1,Paramygin Vladimir A.1,Forrest David2,Sheng Y. Peter1

Affiliation:

1. Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida

2. Department of Physical Sciences, Virginia Institute of Marine Science, Gloucester Point, Virginia

Abstract

Abstract To create more useful storm surge and inundation forecast products, probabilistic elements are being incorporated. To achieve the highest levels of confidence in these products, it is essential that as many simulations as possible are performed during the limited amount of time available. This paper develops a framework by which probabilistic storm surge and inundation forecasts within the Curvilinear Hydrodynamics in 3D (CH3D) Storm Surge Modeling System and the Southeastern Universities Research Association Coastal Ocean Observing and Prediction Program’s forecasting systems are initiated with specific focus on the application of these methods in a limited-resource environment. Ensemble sets are created by dividing probability density functions (PDFs) of the National Hurricane Center model forecast error into bins, which are then grouped into priority levels (PLs) such that each subsequent level relies on results computed earlier and has an increasing confidence associated with it. The PDFs are then used to develop an ensemble of analytic wind and pressure fields for use by storm surge and inundation models. Using this approach applied with official National Hurricane Center (OFCL) forecast errors, an analysis of Hurricane Charley is performed. After first validating the simulation of storm surge, a series of ensemble simulations are performed representing the forecast errors for the 72-, 48-, 24-, and 12-h forecasts. Analysis of the aggregated products shows that PL4 (27 members) is sufficient to resolve 90% of the inundation within the domain and appears to represent the best balance between accuracy and timeliness of computed products for this case study. A 5-day forecast using the PL4 set is shown to complete in 83 min, while the intermediate PL2 and PL3 products, representing slightly less confidence, complete in 14 and 28 min, respectively.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3