Linear Stability Analysis of Runge–Kutta-Based Partial Time-Splitting Schemes for the Euler Equations

Author:

Baldauf Michael1

Affiliation:

1. Deutscher Wetterdienst, Offenbach, Germany

Abstract

Abstract For atmospheric simulation models with resolutions from about 10 km to the subkilometer cloud-resolving scale, the complete nonhydrostatic compressible Euler equations are often used. An important integration technique for them is the time-splitting (or split explicit) method. This article presents a comprehensive numerical stability analysis of Runge–Kutta (RK)-based partial time-splitting schemes. To this purpose a linearized two-dimensional (2D) compressible Euler system containing advection (as the slow process), sound, and gravity wave terms (as fast processes) is considered. These processes are the most important ones in limiting stability. First, the detailed stability properties are discussed with regard to several off-centering weights for each fast process described by horizontally explicit, vertically implicit schemes. Then the stability properties of the temporally and spatially discretized three-stage RK scheme for the complete 2D Euler equations and their stabilization (e.g., by divergence damping) are discussed. The main goal is to find optimal values for all of the occurring numerical parameters to guarantee stability in operational model applications. Furthermore, formal orders of temporal truncation errors for the time-splitting schemes are calculated. With the same methodology, two alternatives to the three-stage RK method, a so-called RK3-TVD method, and a new four-stage, second-order RK method are inspected.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference22 articles.

1. LAPACK users’ guide.;Anderson,1999

2. Integration by time-splitting in mesoscale models.;Baldauf;COSMO Newsl.,2002

3. Stability analysis for linear discretisations of the advection equation with Runge–Kutta time integration.;Baldauf;J. Comput. Phys.,2008

4. The propagation of group of internal gravity waves in a shear flow.;Bretherton;Quart. J. Roy. Meteor. Soc.,1966

5. A description of the nonhydrostatic regional model LM.;Doms,2002

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3