Uncertainties in Air Toxics Calculated by the Dispersion Models AERMOD and ISCST3 in the Houston Ship Channel Area

Author:

Hanna Steven R.1,Paine Robert2,Heinold David2,Kintigh Elizabeth2,Baker Dan3

Affiliation:

1. Hanna Consultants, Kennebunkport, Maine

2. Shell Global Solutions, Houston, Texas

3. ENSR, Westford, Massachusetts

Abstract

Abstract The uncertainties in simulations of annually averaged concentrations of two air toxics (benzene and 1,3-butadiene) are estimated for two widely used U.S. air quality models, the Industrial Source Complex Short-Term, version 3, (ISCST3) model and the American Meteorological Society–Environmental Protection Agency Model (AERMOD). The effects of uncertainties in emissions input, meteorological input, and dispersion model parameters are investigated using Monte Carlo probabilistic uncertainty methods, which involve simultaneous random and independent perturbations of all inputs. The focus is on a 15 km × 15 km domain in the Houston, Texas, ship channel area. Concentrations are calculated at hypothetical receptors located at the centroids of population census tracts. The model outputs that are analyzed are the maximum annually averaged maximum concentration at any single census tract or monitor as well as the annually averaged concentration averaged over the census tracts. The input emissions uncertainties are estimated to be about a factor of 3 (i.e., covering the 95% range) for each of several major categories. The uncertainties in meteorological inputs (such as wind speed) and dispersion model parameters (such as the vertical dispersion coefficient σz) also are estimated. The results show that the 95% range in predicted annually averaged concentrations is about a factor of 2–3 for the air toxics, with little variation by model. The input variables whose variations have the strongest effect on the predicted concentrations are on-road mobile sources and some industrial sources (dependent on chemical), as well as wind speed, surface roughness, and σz. In most scenarios, the uncertainties of the emissions input group contribute more to the total uncertainty than do the uncertainties of the meteorological/dispersion input group.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference16 articles.

1. Cimorelli, A. J. , and Coauthors, 2005: : AERMOD—Description of model formulation. U.S. EPA Tech. Rep. EPA-454/R-03-004, 91 pp. [Available online at http://www.epa.gov/ttn/scram/7thconf/aermod/aermod_mfd.pdf.].

2. The Use of Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs.;Cullen,1999

3. Diffusion and transport experiments.;Draxler,1984

4. EPA , 1995: Description of model algorithms. Vol. II, User’s Guide for the Industrial Source Complex (ISC3) Dispersion Model, revised ed., EPA-454/b-95-003b, 120 pp.

5. EPA , 2000: National Air Toxics Program: The integrated urban strategy EPA-453/R-99-007. OAQPS/EPA, 156 pp.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3